Dataset Formats¶
RF-DETR supports training on datasets in two popular formats: COCO and YOLO. The format is automatically detected based on your dataset's directory structure—simply pass your dataset directory to the train() method.
Automatic Format Detection¶
When you call model.train(dataset_dir=<path>), RF-DETR checks the following:
- COCO format: Looks for
train/_annotations.coco.json - YOLO format: Looks for
data.yaml(ordata.yml) andtrain/images/directory
If neither format is detected, an error is raised with instructions on what's expected.
Roboflow Export
Roboflow can export datasets in both COCO and YOLO formats. When downloading from Roboflow, select the appropriate format based on your preference.
COCO Format¶
COCO (Common Objects in Context) format uses JSON files to store annotations in a structured format with images, categories, and annotations.
Directory Structure¶
dataset/
├── train/
│ ├── _annotations.coco.json
│ ├── image1.jpg
│ ├── image2.jpg
│ └── ... (other image files)
├── valid/
│ ├── _annotations.coco.json
│ ├── image1.jpg
│ ├── image2.jpg
│ └── ... (other image files)
└── test/
├── _annotations.coco.json
├── image1.jpg
├── image2.jpg
└── ... (other image files)
Annotation File Structure¶
Each _annotations.coco.json file contains:
{
"info": {
"description": "Dataset description",
"version": "1.0"
},
"licenses": [],
"images": [
{
"id": 1,
"file_name": "image1.jpg",
"width": 640,
"height": 480
}
],
"categories": [
{
"id": 1,
"name": "cat",
"supercategory": "animal"
},
{
"id": 2,
"name": "dog",
"supercategory": "animal"
}
],
"annotations": [
{
"id": 1,
"image_id": 1,
"category_id": 1,
"bbox": [100, 150, 200, 180],
"area": 36000,
"iscrowd": 0
}
]
}
Key Fields¶
| Field | Description |
|---|---|
images |
List of image metadata including id, file_name, width, height |
categories |
List of object categories with id and name |
annotations |
List of object annotations linking images to categories |
bbox |
Bounding box in [x, y, width, height] format (top-left corner) |
area |
Area of the bounding box |
iscrowd |
0 for individual objects, 1 for crowd regions |
Segmentation Annotations¶
For training segmentation models, your COCO annotations must include a segmentation key with polygon coordinates:
{
"id": 1,
"image_id": 1,
"category_id": 1,
"bbox": [100, 150, 200, 180],
"area": 36000,
"iscrowd": 0,
"segmentation": [[100, 150, 150, 150, 200, 200, 150, 250, 100, 200]]
}
The segmentation field contains a list of polygons, where each polygon is a flat list of coordinates: [x1, y1, x2, y2, x3, y3, ...].
YOLO Format¶
YOLO format uses separate text files for each image's annotations and a data.yaml configuration file that defines class names.
Directory Structure¶
dataset/
├── data.yaml
├── train/
│ ├── images/
│ │ ├── image1.jpg
│ │ ├── image2.jpg
│ │ └── ...
│ └── labels/
│ ├── image1.txt
│ ├── image2.txt
│ └── ...
├── valid/
│ ├── images/
│ │ ├── image1.jpg
│ │ ├── image2.jpg
│ │ └── ...
│ └── labels/
│ ├── image1.txt
│ ├── image2.txt
│ └── ...
└── test/
├── images/
│ ├── image1.jpg
│ └── ...
└── labels/
├── image1.txt
└── ...
data.yaml Configuration¶
The data.yaml file at the root of your dataset directory defines the class names:
| Field | Description |
|---|---|
names |
List of class names (0-indexed) |
nc |
Number of classes |
train, val, test |
Paths to image directories (relative to data.yaml) |
Alternative format
Some YOLO datasets use a dictionary format for names:
Both formats are supported.Label File Format¶
Each image has a corresponding .txt file in the labels/ directory with the same base name. Each line in the label file represents one object:
Example (image1.txt):
Coordinate Format¶
| Field | Range | Description |
|---|---|---|
class_id |
0, 1, 2, ... | Zero-indexed class ID from names in data.yaml |
x_center |
0.0 - 1.0 | Normalized x-coordinate of bounding box center |
y_center |
0.0 - 1.0 | Normalized y-coordinate of bounding box center |
width |
0.0 - 1.0 | Normalized width of bounding box |
height |
0.0 - 1.0 | Normalized height of bounding box |
All coordinates are normalized relative to image dimensions. For example, if an image is 640×480 pixels and the bounding box center is at (320, 240):
x_center= 320 / 640 = 0.5y_center= 240 / 480 = 0.5
Segmentation Labels (YOLO-Seg)¶
For segmentation, YOLO format extends the label format with polygon coordinates:
Example (image1.txt with segmentation):
The coordinates after the class ID represent the polygon vertices in normalized format.
Converting Between Formats¶
YOLO to COCO¶
You can use the supervision library to convert datasets:
import supervision as sv
# Load YOLO dataset
dataset = sv.DetectionDataset.from_yolo(
images_directory_path="path/to/images",
annotations_directory_path="path/to/labels",
data_yaml_path="path/to/data.yaml"
)
# Save as COCO
dataset.as_coco(
images_directory_path="output/images",
annotations_path="output/annotations.json"
)
COCO to YOLO¶
import supervision as sv
# Load COCO dataset
dataset = sv.DetectionDataset.from_coco(
images_directory_path="path/to/images",
annotations_path="path/to/annotations.json"
)
# Save as YOLO
dataset.as_yolo(
images_directory_path="output/images",
annotations_directory_path="output/labels",
data_yaml_path="output/data.yaml"
)
Using Roboflow¶
Roboflow provides a web interface to:
- Upload datasets in any format
- Annotate new images or edit existing annotations
- Export in COCO, YOLO, or other formats
This is often the easiest way to convert between formats while also having the option to augment your data.
Which Format Should I Use?¶
Both formats work equally well with RF-DETR. Choose based on your workflow:
| Consideration | COCO | YOLO |
|---|---|---|
| Annotation storage | Single JSON file per split | One text file per image |
| Human readability | JSON structure, verbose | Simple text, compact |
| Other framework compatibility | DETR family, MMDetection | Ultralytics YOLO |
| Segmentation support | Full polygon support | Full polygon support |
| Editing annotations | Requires JSON parsing | Simple text editing |
Recommendation
If you're exporting from Roboflow or already have a dataset in one format, simply use that format. RF-DETR handles both identically.
Troubleshooting¶
Format Detection Fails¶
If you see an error like:
Check that:
For COCO format:
- train/_annotations.coco.json exists
- The JSON file is valid
For YOLO format:
- data.yaml or data.yml exists at the root
- train/images/ directory exists with images
Empty Annotations¶
If images have no objects, handle them as follows:
COCO format: Include the image in the images array but don't add any annotations for it.
YOLO format: Create an empty .txt file (0 bytes) for the image, or omit the label file entirely.
Class ID Mismatch¶
COCO format: Category IDs in annotations must match IDs defined in the categories array.
YOLO format: Class IDs in label files must be valid indices (0 to nc-1) based on the names list in data.yaml.